Erweiterte
Suche ›

Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives

Wiley, J,
Buch
122,00 € Lieferbar in 2-3 Tagen
Dieses Produkt ist auch verfügbar als:

Kurzbeschreibung

This book brings together a collection of articles on statistical methods relating to missing data analysis, including multiple imputation, propensity scores, instrumental variables, and Bayesian inference. Covering new research topics and real-world examples which do not feature in many standard texts. The book is dedicated to Professor Don Rubin (Harvard). Don Rubin has made fundamental contributions to the study of missing data.
Key features of the book include:
* Comprehensive coverage of an imporant area for both research and applications.
* Adopts a pragmatic approach to describing a wide range of intermediate and advanced statistical techniques.
* Covers key topics such as multiple imputation, propensity scores, instrumental variables and Bayesian inference.
* Includes a number of applications from the social and health sciences.
* Edited and authored by highly respected researchers in the area.

Details
Schlagworte

Titel: Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives
Autoren/Herausgeber: Andrew Gelman, Xiao-Li Meng (Hrsg.)
Aus der Reihe: Wiley Series in Probability and Statistics
Ausgabe: 1. Auflage

ISBN/EAN: 9780470090435

Seitenzahl: 440
Format: 23,7 x 16,7 cm
Produktform: Hardcover/Gebunden
Gewicht: 826 g
Sprache: Englisch

buchhandel.de - Newsletter
Möchten Sie sich für den Newsletter anmelden?


Bitte geben Sie eine gültige E-Mail-Adresse ein.
Lieber nicht