Ab dem 31. Januar stellt buchhandel.de die Verkaufsfunktion ein!

Bitte sichern Sie alle notwendigen Daten, wie etwa Rechnungen oder Ihre Wunschliste in Ihrem Kundenprofil.
Weitere Informationen finden Sie hier: https://www.buchhandel.de/info/hilfe.
Suche ›

Computation and Stability of Patterns in Hyperbolic-Parabolic Systems

48,80 € Preisreferenz Lieferbar in 2-3 Tagen


This work is devoted to the stability analysis and numerical long time-simulation of relative equilibria in partial differential equations. The simplest examples of nontrivial relative equilibria - or patterns - are traveling waves. These arise in a wide range of applications like nerve axon equations or reaction-diffusion models. Due to their relevance, the stability of traveling waves has been considered by many authors. Important contributions are made by [Evans, 1972-1975], [Sattinger, 1976], [Henry, 1981], and [Bates and Jones, 1989], to name just a few.
A major difficulty with the numericallong-time simulation of relative equilibria arises from the fact that the relevant part of the solution typically leaves the computational domain. Here the freezing method is a possibility to counter this problem. It is presented in a very general setting and justified for a large class of equations. Originally the method was introduced independently by [Beyn and Thümmler, 2004] and [Rowleyet al., 2003]. Its basic idea is to split the evolution into a symmetry and a shape part. In practice, the method leads to a partial differential algebraic equation (PDAE).


Titel: Computation and Stability of Patterns in Hyperbolic-Parabolic Systems
Autoren/Herausgeber: Jens Rottmann-Matthes
Aus der Reihe: Berichte aus der Mathematik
Ausgabe: 1., Aufl.

ISBN/EAN: 9783832290641

Seitenzahl: 193
Format: 21 x 14,8 cm
Produktform: Buch
Gewicht: 290 g
Sprache: Englisch

buchhandel.de - Newsletter
Möchten Sie sich für den Newsletter anmelden?

Bitte geben Sie eine gültige E-Mail-Adresse ein.
Lieber nicht