Suche ›

Feed-Forward Neural Networks

Vector Decomposition Analysis, Modelling and Analog Implementation

Springer US,
181,89 € Lieferbar in 5-7 Tagen
Dieses Produkt ist auch verfügbar als:


Feed-Forward Neural Networks: Vector Decomposition Analysis, Modelling and Analog Implementation presents a novel method for the mathematical analysis of neural networks that learn according to the back-propagation algorithm. The book also discusses some other recent alternative algorithms for hardware implemented perception-like neural networks. The method permits a simple analysis of the learning behaviour of neural networks, allowing specifications for their building blocks to be readily obtained. Starting with the derivation of a specification and ending with its hardware implementation, analog hard-wired, feed-forward neural networks with on-chip back-propagation learning are designed in their entirety. On-chip learning is necessary in circumstances where fixed weight configurations cannot be used. It is also useful for the elimination of most mis-matches and parameter tolerances that occur in hard-wired neural network chips. Fully analog neural networks have several advantages over other implementations: low chip area, low power consumption, and high speed operation. Feed-Forward Neural Networks is an excellent source of reference and may be used as a text for advanced courses.


Titel: Feed-Forward Neural Networks
Autoren/Herausgeber: Jouke Annema
Aus der Reihe: The Springer International Series in Engineering and Computer Science
Ausgabe: 1995

ISBN/EAN: 9780792395676

Seitenzahl: 238
Format: 23,5 x 15,5 cm
Produktform: Hardcover/Gebunden
Gewicht: 1,190 g
Sprache: Englisch - Newsletter
Möchten Sie sich für den Newsletter anmelden?

Bitte geben Sie eine gültige E-Mail-Adresse ein.
Lieber nicht