Erweiterte
Suche ›

Modelling Tropospheric Volcanic Aerosol

From Aerosol Microphysical Processes to Earth System Impacts

Springer Berlin,
E-Book ( PDF mit Adobe DRM )
In Ihrem Land nicht verfügbar
Dieses Produkt ist auch verfügbar als:

Kurzbeschreibung

Using a state-of-the-art global microphysics model, this book examines the impact of tropospheric volcanic aerosol on the atmosphere, climate, air quality and human health. It shows that continuously degassing volcanoes exert a major effect on global climate.

Details
Schlagworte
Autor
Hauptbeschreibung

Titel: Modelling Tropospheric Volcanic Aerosol
Autoren/Herausgeber: Anja Schmidt
Aus der Reihe: Springer Theses
Ausgabe: 2013

ISBN/EAN: 9783642348396

Seitenzahl: 145
Produktform: E-Book
Sprache: Englisch

Anja Schmidt is a Research Fellow at the Institute for Climate and Atmospheric Science, University of Leeds, since March 2011. Her current work involves modelling large-scale, sulphur-rich Icelandic volcanic eruptions using both a Global Aerosol Model (GLOMAP) and a Lagrangian particle model (NAME). She is currently using these models to simulate the impact of present-day Laki-style eruptions on air pollution and its subsequent impacts on human health and commercial aviation. Anja Schmidt received several honors and other accolades, for example: - Honourable mention for outstanding student presentation, VMSG 2011 - 3rd prize University of Leeds Postgraduate Researcher of the year competition, 2010 - University of Leeds PhD Research Scholarship (URS) (Oct 2007 – Oct 2010) - 1st prize University of Leeds Faculty of Environment Conference, Poster Competition, 2008 - IAVCEI young scientist grant (2008)

Anja Schmidt's thesis is a unique and comprehensive evaluation of the impacts of tropospheric volcanic aerosol on the atmosphere, climate, air quality and human health. Using a state-of-the-art global microphysics model, the thesis describes and quantifies the impact of volcanic sulphur emissions on global aerosol, clouds and the radiative forcing of climate. The advanced model enables the first ever estimate of the impact of the emissions on aerosol microphysical properties such as particle number concentrations and sizes, and therefore a considerably improved ability to quantify the climate and air quality effects. There are several important discoveries in this thesis. Firstly, it is shown that continuously degassing volcanoes exert a major effect on global clouds and climate. Secondly, the impact of the 1783 Laki eruption in Iceland is re-examined to show that this long-lasting flood lava eruption would have had major effects on clouds and climate. Thirdly, by combining her research on volcanism, atmospheric science and epidemiology, she shows that a present-day Laki-like eruption would seriously affect European air quality and cause over 100000 premature deaths in the first year.

buchhandel.de - Newsletter
Möchten Sie sich für den Newsletter anmelden?


Bitte geben Sie eine gültige E-Mail-Adresse ein.
Lieber nicht