Suche ›

Practical Machine Learning: Innovations in Recommendation

O'Reilly Media,
E-Book ( EPUB mit Adobe DRM )
In Ihrem Land nicht verfügbar


Building a simple but powerful recommendation system is much easier than you think. Approachable for all levels of expertise, this report explains innovations that make machine learning practical for business production settingsand demonstrates how even a small-scale development team can design an effective large-scale recommendation system.Apache Mahout committers Ted Dunning and Ellen Friedman walk you through a design that relies on careful simplification. Youll learn how to collect the right data, analyze it with an algorithm from the Mahout library, and then easily deploy the recommender using search technology, such as Apache Solr or Elasticsearch. Powerful and effective, this efficient combination does learning offline and delivers rapid response recommendations in real time.Understand the tradeoffs between simple and complex recommendersCollect user data that tracks user actionsrather than their ratingsPredict what a user wants based on behavior by others, using Mahoutfor co-occurrence analysisUse search technology to offer recommendations in real time, complete with item metadataWatch the recommender in action with a music service exampleImprove your recommender with dithering, multimodal recommendation, and other techniques


Titel: Practical Machine Learning: Innovations in Recommendation
Autoren/Herausgeber: Ted Dunning, Ellen Friedman

ISBN/EAN: 9781491915714

Seitenzahl: 56
Produktform: E-Book
Sprache: Englisch - Newsletter
Möchten Sie sich für den Newsletter anmelden?

Bitte geben Sie eine gültige E-Mail-Adresse ein.
Lieber nicht