Erweiterte
Suche ›

Proportional Hazards Regression

Springer New York,
Buch
139,09 € Lieferbar in 5-7 Tagen
Dieses Produkt ist auch verfügbar als:

Kurzbeschreibung

This book focuses on the theory and applications of a very broad class of models which underlie modern survival analysis. However, this text differs from most recent works in that it is mostly concerned with methodological issues rather than the analysis itself.

Details
Schlagworte
Hauptbeschreibung

Titel: Proportional Hazards Regression
Autoren/Herausgeber: John O'Quigley
Aus der Reihe: Statistics for Biology and Health
Ausgabe: Softcover reprint of hardcover 1st ed. 2008

ISBN/EAN: 9781441920454

Seitenzahl: 542
Format: 23,5 x 15,5 cm
Produktform: Taschenbuch/Softcover
Gewicht: 848 g
Sprache: Englisch

Proportional hazards models and their extensions (models with ti- dependent covariates, models with time dependent regression co- cients, models with random coe?cients and any mixture of these) can be used to characterize just about any applied problem to which the techniques of survival analysis are appropriate. This simple obser- tion enables us to ?nd an elegant statistical expression for all plausible practical situations arising in the analysis of survival data. We have a single unifying framework. In consequence, a solid understanding of the framework itself o?ers the statistician the ability to tackle the thorniestofquestionswhichmayarisewhendealingwithsurvivaldata. The main goal of this text is not to present or review the very s- stantial amount of research that has been carried out on proportional hazards and related models. Rather, the goal is to consider the many questions which are of interest in a regression analysis of survival data (prediction, goodness of ?t, model construction, inference and int- pretation in the presence of misspeci?ed models) from the standpoint of the proportional hazards and the non-proportional hazards models.

buchhandel.de - Newsletter
Möchten Sie sich für den Newsletter anmelden?


Bitte geben Sie eine gültige E-Mail-Adresse ein.
Lieber nicht