Suche ›

Robust Subspace Estimation Using Low-Rank Optimization

Theory and Applications

101,64 € Lieferbar in 2-3 Tagen
Dieses Produkt ist auch verfügbar als:


Various fundamental applications in computer vision and machine learning require finding the basis of a certain subspace. Examples of such applications include face detection, motion estimation, and activity recognition. An increasing interest has been recently placed on this area as a result of significant advances in the mathematics of matrix rank optimization. Interestingly, robust subspace estimation can be posed as a low-rank optimization problem, which can be solved efficiently using techniques such as the method of Augmented Lagrange Multiplier. In this book, the authors discuss fundamental formulations and extensions for low-rank optimization-based subspace estimation and representation. By minimizing the rank of the matrix containing observations drawn from images, the authors demonstrate  how to solve four fundamental computer vision problems, including video denosing, background subtraction, motion estimation, and activity recognition.


Titel: Robust Subspace Estimation Using Low-Rank Optimization
Autoren/Herausgeber: Omar Oreifej, Mubarak Shah
Aus der Reihe: The International Series in Video Computing
Ausgabe: Softcover reprint of the original 1st ed. 2014

ISBN/EAN: 9783319352480

Seitenzahl: 114
Format: 23,5 x 15,5 cm
Produktform: Taschenbuch/Softcover
Gewicht: 197 g
Sprache: Englisch - Newsletter
Möchten Sie sich für den Newsletter anmelden?

Bitte geben Sie eine gültige E-Mail-Adresse ein.
Lieber nicht