Erweiterte
Suche ›

Time-Symmetry Breaking in Turbulent Multi-Particle Dispersion

E-Book ( PDF mit Adobe DRM )
In Ihrem Land nicht verfügbar
Dieses Produkt ist auch verfügbar als:

Kurzbeschreibung

This thesis presents experimental and theoretical investigations of the connection between the time asymmetry in the short-time evolution of particle clusters and the intrinsic irreversibility of turbulent flows due to the energy cascade. The term turbulence describes a special state of a continuous medium in which many interacting degrees of freedom are excited. One of the interesting phenomena observed in turbulent flows is their time irreversibility. When milk is stirred into coffee, for example, highly complex and interwoven structures are produced, making the  mixing process irreversible. This behavior can be analyzed in more detail by studying the dispersion of particle clusters. Previous experimental and numerical studies on the time asymmetry in two-particle dispersion indicate that particles separate faster backwards than forwards in time, but no conclusive explanation has yet been provided. In this thesis, an experimental study on the short-time behavior of two- and four-particle dispersion in a turbulent water flow between two counter-rotating propellers is presented. A brief but rigorous theoretical analysis reveals that the observed time irreversibility is closely linked to the turbulence energy cascade. Additionally, it is demonstrated experimentally that the addition of minute amounts of polymers to the flow has a significant impact on multi-particle dispersion due to an alteration of the energy cascade.

Details
Schlagworte
Autor

Titel: Time-Symmetry Breaking in Turbulent Multi-Particle Dispersion
Autoren/Herausgeber: Jennifer Jucha
Aus der Reihe: Springer Theses
Ausgabe: 1st ed. 2015

ISBN/EAN: 9783319191928

Seitenzahl: 113
Produktform: E-Book
Sprache: Englisch

Dr. Jennifer Jucha studied physics at the Johannes Gutenberg-Universität Mainz. She obtained her diploma with honors in 2011, before joining the Max Planck Institute for Dynamics and Self-Organization, Göttingen, for her doctoral research. She received her PhD in Physics in 2014 for her experimental and theoretical work on the time irreversibility of particle dispersion in turbulent flows. In 2015, she was awarded a research fellowship from the Humboldt Foundation for a project at Ecole Normale Supérieure de Lyon studying the motion of macroscopic particles in a turbulent flow.

buchhandel.de - Newsletter
Möchten Sie sich für den Newsletter anmelden?


Bitte geben Sie eine gültige E-Mail-Adresse ein.
Lieber nicht